
Tips and techniques for
improving embedded

Linux startup time
Guests
• Sridharan Subramanian, Software & Platforms Prod Mgmt Lead

– Freescale Semiconductor
• Christopher Hallinan, Field Applications Engineer

– MontaVista Software

Presented by

Moderator: Don Dingee, OpenSystems Media

Tips and techniques for improving embedded Linux startup time

Agenda

• A bit of housekeeping
• Moderator thoughts on topic
• Expert guest presentations
• Q&A – send us your questions

Tips and techniques for improving embedded Linux startup time

Face it, we’re impatient

• How long is too long to wait
for a boot?

• Recent blog from the other
OS camp: “… a very good
system is one that boots in
15 seconds …”

• Nowhere near good enough
in many embedded apps

• It depends what OS, and how
much you really need

Tips and techniques for improving embedded Linux startup time

• Smartphones have set the bar
• Infotainment devices are

following – in the car and home
• Medical devices need speed
• Industrial devices too
• As expectations drop,

shaving seconds
counts more

• And Linux can get the job done

Not just consumers need ‘instant-on’

Question/Answer
Guests
• Sridharan Subramanian, Software & Platforms Prod Mgmt Lead

– Freescale Semiconductor
• Christopher Hallinan, Field Applications Engineer

– MontaVista Software

TM

Tips and techniques for improving
embedded Linux startup time

Presented by MontaVista Software and Freescale Semiconductor

Chris Hallinan
Field Applications Engineer

MontaVista Software

Sridharan Subramanian
Software & Platforms Product Manager

Freescale Semiconductor

TM

► Challenges facing consumer product design

► Embedded hardware and software platforms to address these
challenges

► Software techniques to decrease boot time

► Overview of boot sequence

► Linux kernel optimizations

Contents

mvista.com/Freescale Slide #2

TM

Multimedia Devices – Explosive Growth
► Cellular

• 4 billion subscribers by the end of 2010

► Mobile Multimedia
• >200M Portable Media Players sold/year by

2010
• >50M Personal Navigation Devices by 2010

► Auto Infotainment
• 60% of worldwide vehicles Bluetooth enabled

by 2013 at a 40% CAGR.

► Consistent Trends
• Video becoming standard in PMP
• GPS proliferation in cellular and auto
• Connected devices – 3G, Bluetooth, Wi-Fi
• Richer UI with browser

Sources: Cowan, In-stat, iSuppli

mvista.com/Freescale Slide #3

TM

What do consumers want?

► ‘Cool’ devices

► Enhanced features – Video and connectivity

► Quality

► Performance and battery life

► Instant-on; Time is essential

mvista.com/Freescale Slide #4

TM

What do consumer device manufacturers want?

► Hardware
• Minimize die size
• Efficient memory bandwidth utilization
• Minimize power; Maximize battery life

► Software
• Choice of operating systems
• Portability and reuse
• Optimization at all levels
• Validation

► $$
• Least cost!

mvista.com/Freescale Slide #5

TM

Software challenges facing consumer product design

Three major development pain points we hear from our
customers in software enablement are:

1. Support of multiple hardware architectures
• Keep costs low, Keep up with the latest technology, and Support more than one

product line

2. Good tools story
• Leverage software development tools across various products

3. An overwhelming number of features to implement in a short
development window

mvista.com/Freescale Slide #6

TM

► Challenges facing consumer product design

► Embedded hardware and software platforms to address these
challenges

► Software techniques to decrease boot time

► Overview of boot sequence

► Linux kernel optimizations

Contents

mvista.com/Freescale Slide #7

TM

Hardware

► Each SoC needs to be defined for a target segment. Some of the
customizations include:
• Variations in Core speed
• Multimedia and graphics capability
• Cost of end device/platform
• Automotive qualification
• Industrial specifications

► Peripherals vary resulting in different board configurations
• Device connectivity like Bluetooth, USB
• Network connectivity like WiFi, Ethernet
• Display variations – size and type
• Storage variations – NOR, NAND, SD/MMC,..etc
• Memory type – mDDR, DDR2, etc

mvista.com/Freescale Slide #8

TM

i.MX Applications Processors

Multimedia:
Convergence of Audio, Video and Connectivity

► Primary Applications
• Media Players
• Navigation Devices
• Automotive Infotainment
• General Embedded

► Performance, Low Power
and Portability

• Optimized performance per MHz
• Low-power leadership
• Range of audio and video formats,

graphics and connectivity options
• On-chip accelerators optimize

performance and battery life
• Linux Support

Video | Graphics | Security | Audio | Connectivity | Low Power

Portable Consumer

Automotive

Industrial

Enterprise

mvista.com/Freescale Slide #9

TM

Freescale Multimedia Applications Processors

Industrial
General
Embedded

Automotive
Infotainment

Mobile
Consumer

2003 - 2005 2006 2008-20092007

i.MX27

• ARM926, 400MHz
• D1 Video E/D
• Ethernet, USB

• ARM1136, 532MHz+
• 3D GPU
• VGA+ Video

i.MX31(L)

i.MX31 - Auto

• ARM926TM

• 266 MHz
• CIF MPEG4

enc/dec

i.MX21

i.MXL

• ARM920,150 MHz
• LCD, USB

i.MXS
i.MX21S

• ARM920, 100MHz
• FS USB Device

• ARM926, 266MHz
• FS USB OTG, Host

i.MX27L

• ARM926
• 400MHz
• Ethernet, USB

• ARM1136
• 532MHz+

i.MX31(L)

N
ex

t g
en

er
at

io
n

pr
oc

es
so

rs

i.MX35

mvista.com/Freescale Slide #10

i.MX37

• ARM1176, 532MHz
• D1 Decode
• TV-out

• ARM1136, 532MHz
• Open VG 1.1
• Ethernet, DDR2
• USB Phy x2, CAN

TM

The Linux software stack

Board and peripheralsHardware

Linux
OS layer

Middleware
layer

Application
layer

HMI

Bootloader Kernel

SoC
drivers

Drivers for
Connectivity, PM, etc

Accelerated
Codecs

LSP

Media
framework

Network
Connectivity

Device
Connectivity

Graphics
libraries

Segment
Specific libs

Power
management

Security/
DRM

Core services / infrastructure
DBUS, UDEV, GSM, GPS,.etc

Core
libraries

Java™

Apps
framework BrowserPIMLauncher

SearchMobile
officePlayer Navigation Misc apps

for target
markets

Windows Skins Fonts Sounds Manager

mvista.com/Freescale Slide #11

TM

► Challenges facing consumer product design

► Embedded hardware and software platforms to address these
challenges

► Software techniques to decrease boot time

► Overview of boot sequence

► Linux kernel optimizations

Contents

mvista.com/Freescale Slide #12

TM

►Fast Boot is important to many markets
• Consumer products
• Automotive systems
• Medical devices

►Boot time is affected by many factors:
• Hardware design
• Bootloader implementation
• Kernel configuration
• Application profile

►It is not difficult to get significant improvements with
minimal investment

The Solution…

mvista.com/Freescale Slide #13

TM

Fast Boot Starts with Hardware Design
• Processor clock speed
• Clock generation
• DRAM interface
• Flash
• Power-on-reset circuitry
• Peripheral chips
• Configurable FPGAs, etc.
• and more…

Hardware Design

mvista.com/Freescale Slide #14

TM

►Bootloader implementation

►Bootloader has two primary responsibilities:
• Initialize CPU/Hardware (minimally)
• Locate, load and execute a kernel image

May involve several steps, including device i/o, decompression,
etc.

►Most bootloaders have many more features
• Not always a good thing...

Boatloader Considerations

mvista.com/Freescale Slide #15

TM

►Bootloader Implementation
• Lots of useful “development” functionality

dhcp, tftp, pci scan, mem utils
device initialization, Flash utilities, etc
In a production system, many of these features are unnecessary

• Disabling these features can have a significant impact on boot time

• For fastest boot, you want the bootloader to get out of the way as
quickly as possible

• Remember, small == fast

Bootloader Consideration

mvista.com/Freescale Slide #16

TMmvista.com/Freescale Slide #17

►Bootloader
• Remove support for unused features
• Modify/remove hardware probing features
• Keep it Simple, Keep it Small

►Kernel
• Many opportunities for optimization
• Low hanging fruit can be easy to 'pluck'

►Applications
• Most are up to you!

What components can we optimize?

TM

► Challenges facing consumer product design

► Embedded hardware and software platforms to address these
challenges

► Software techniques to decrease boot time

► Overview of boot sequence

► Linux kernel optimizations

Contents

mvista.com/Freescale Slide #18

TM

Typical Boot Sequence

mvista.com/Freescale Slide #19

Most of this is
serial processing!

Much of userland
early init is also

serial processing!

TM

► Challenges facing consumer product design

► Embedded hardware and software platforms to address these
challenges

► Software techniques to decrease boot time

► Overview of boot sequence

► Linux kernel optimizations

Contents

mvista.com/Freescale Slide #20

TM

►Use Uncompressed Kernel
• Decompression can take several seconds!
• Tradeoff: more Flash storage required

►Kernel build produces two images*
• Image and zImage (ARM)
• Obviously, zImage is the compressed version

►On i.MX31, this saved on average ~750 ms

*Details vary for each architecture, ARM discussed here

Kernel Image Optimization

mvista.com/Freescale Slide #21

TM

►Eliminate Unnecessary Kernel Options
• Reduces kernel size
• Speeds up kernel loading

►Typical default kernel config contains lots of “stuff” you
may not need:

• MD/Raid support, IPv6, Numerous File Systems, Extended
Partition support, etc.

• Debug features such as kernel symbols, ikconfig, etc.
• Many are compiled in features and increase kernel size

Linux Kernel Configuration

mvista.com/Freescale Slide #22

TM

►CONFIG_IKCONFIG
• Removes support for config info, makes kernel smaller
• (~ 250 ms improvement)

►CONFIG_MD
• RAID/LVM support

►CONFIG_IDE
• Saves init time if not used on HW w/ IDE ctrlr
• Can also use hdx=noprobe

Examples: Interesting Kernel Configuration

mvista.com/Freescale Slide #23

TM

►CONFIG_DEBUG_KERNEL
• Reduces kernel size substantially

►CONFIG_KALLSYMS
• Different than gcc -g

►CONFIG_PCCARD
• Disable PCMCIA if not required

►Check Networking config options
• Lots of functionality there, do you need it all?

ie. kernel autoconf, multicast, advanced router, tunnelling, etc.

Examples: Interesting Kernel Configuration

mvista.com/Freescale Slide #24

TM

►CONFIG_HOTPLUG
• Remove support for hotplug if not required

►CONFIG_BUG
• Used for debug – can be removed if desired

►Check Device Driver config options
• Lots of default functionality that you may not need
• Consumes space (and costs load time) even if not used
• Can generate time-consuming h/w probes of non-existent devices

►Anything compiled as a module, if unused, is irrelevant
• Won't affect start-up time
• Caveat: if you can avoid CONFIG_MODULES, kernel will be

smaller, thus faster to load!

More Interesting Kernel Config Options

mvista.com/Freescale Slide #25

TM

►Remove support for unnecessary FS features

►Default configs often have much of this enabled (=y)
• CONFIG_DNOTIFY
• CONFIG_INOTIFY
• CONFIG_XFS
• CONFIG_AUTOFS4_FS (Automounter)
• etc

►Won't make a large performance difference, but a smaller
kernel will definitely load faster. (almost 20% smaller after
removing unused FS features!)

More Interesting Kernel Config Options

mvista.com/Freescale Slide #26

TM

►Processor does not copy Kernel image to DRAM
• Executes directly from (NOR) Flash

►Advantages
• Reduces amount of DRAM required (and thus power)
• Eliminates time-consuming copy from Flash

►Disadvantages
• Depending on h/w architecture, could be much slower

i.e. burst/cache performance, etc.
• Cost of Flash – kernel must be stored uncompressed

►Your Mileage May Vary

XIP – Execute in Place

mvista.com/Freescale Slide #27

TM

►Many hardware platforms spend considerable time in
calibration routines

• “Calculating BogoMips...”
• Allows precise µdelay() routines
• Can take significant time

►Use kernel command line: loops-per-jiffy:
• lpj=xxxxx

►Easy to use: most platforms will display correct value in
kernel log (and to console) on start-up

Calibration Routines

mvista.com/Freescale Slide #28

TM

►Consider your system requirements:
• What functionality must be available immediately?
• What functionality can be deferred?

►Drivers can be pre-compiled into kernel or built as modules
for loading later

• Use pre-compiled drivers for those functions that must be
immediately available

• Use Loadable Modules for deferred functionality
Bear in mind the previous caveat: if you can deploy without loadable
module support, smaller is faster!

Driver Configuration

mvista.com/Freescale Slide #29

TM

►Consider CRAMFS for initial read-only File System
• Compact and fast
• No journaling entries to scan on initial mount

►Use tmpfs for /tmp, possibly /var, others

►Mount writable File System later, such as JFFS2 on NOR
Flash

►Consider your tolerance to sudden power off
• Journaling file systems can protect but at a cost of increased start-up

times

File System Selection

mvista.com/Freescale Slide #30

TM

►The “Brute Force” approach - CONFIG_PRINTK
• Completely eliminates calls to printk()

►Advantages
• Saves significant kernel size, and therefore load time
• Eliminates many boot messages - decreasing boot time

►Disadvantage
• No kernel status messages are available!
• Makes kernel debugging very difficult

►A thoroughly tested kernel should work well here

Remove Support for printk()

mvista.com/Freescale Slide #31

TM

KFT: Kernel Function Timing
• Requires KALLSYMS mentioned above!
• Provides function call tracing and timing

Entry Duration Local Pid Trace
---------- ---------- ---------- ------- --------------------------------

162 11523 0 0 paging_init
162 11523 0 0 | free_area_init_nodes
162 11523 12 0 | | free_area_init_node
162 11511 11511 0 | | | _etext+0x2f0
162 11511 0 0 __alloc_bootmem_node
162 11511 11511 0 ! __alloc_bootmem_core

11787 2307 2307 0 vfs_caches_init_early
11787 1531 69 0 vfs_caches_init_early
11787 686 0 0 [alloc_large_system_hash
11787 686 0 0 [[__alloc_bootmem
11787 686 0 0 [[[__alloc_bootmem_nopanic
11787 686 686 0 [[[[__alloc_bootmem_core
13318 776 776 0 [inode_init_early
14094 1208 641 0 mem_init
14094 567 4 0 # free_all_bootmem
14094 563 563 0 # # free_all_bootmem_core
15607 3851 3851 0 schedule
15607 3848 3848 0 schedule
15630 1573099 1573099 1 kernel_init
15666 81152 81152 4 schedule
15666 81139 81139 4 schedule

Tools for Measuring Startup Time

mvista.com/Freescale Slide #32

TM

Linux Trace Toolkit

Tools for Measuring Startup Time

mvista.com/Freescale Slide #33

TM

►i.MX31 Baseline

►Initial Software Configuration
• Redboot Version FSL 200740
• Linux 2.6.21 – default config
• Typical embedded configuration

Networking, DHCP client
Ext2, JFFS2 File System support
Full SysV init

►Time to Boot:
• 0:36 seconds, kernel start to command prompt
• Redboot bootloader takes 10 seconds (not bad for stock

hardware platform!)

Initial Baseline

mvista.com/Freescale Slide #34

TM

►Final Configuration
• Networking, static IP
• Busybox userland
• Many kernel optimizations

►Total boot time
• 2.7 seconds, kernel start to command prompt!

• Remember, this improvement came at a very modest engineering
cost (i.e. effort!)

After Inexpensive Optimizations

mvista.com/Freescale Slide #35

TM

►linux-embedded (mail list)
• Proposal for deferred initcalls

►/proc/uptime
• System uptime/idle time. Useful for scripting

►printk time stamps (see next slide)

►initcall_debug (example to follow)

►quiet
• on kernel command line, suppresses printk output during boot,

preserving the printk infrastructure

Courtesy of Tim Bird
Architecture Group Chair, CE Linux Forum
Senior Staff Engineer, Sony Corporation of America

Other Useful Ideas

mvista.com/Freescale Slide #36

TM

►printk timestamps (CONFIG_PRINTK_TIME)
• Appends time info to printk() output
• Enables measurement of long operations, esp. at boot time

[1.321054] md: linear personality registered for level -1
[1.326629] md: raid0 personality registered for level 0
[1.331964] md: raid1 personality registered for level 1
[1.342289] TCP cubic registered
[1.345936] NET: Registered protocol family 1
[1.350403] NET: Registered protocol family 17
[1.355816] RPC: Registered udp transport module.
[1.360571] RPC: Registered tcp transport module.
[1.366034] drivers/rtc/hctosys.c: unable to open rtc device (rtc0)
[2.880506] IP-Config: Complete:
[2.883575] device=eth0, addr=192.168.1.201, mask=255.255.255.0, gw=255.255.255.255,
[2.892227] host=8349itx, domain=, nis-domain=(none),
[2.897798] bootserver=192.168.1.9, rootserver=192.168.1.9, rootpath=
[2.906152] md: Autodetecting RAID arrays.

Other Useful Ideas

mvista.com/Freescale Slide #37

TM

►initcall_debug
• Great way to get a detailed view of system init timing
• Simply add “initcall_debug” to kernel command line

Other Useful Ideas

mvista.com/Freescale Slide #38

4 msecs: initcall c02c7da0 t linear_init
5 msecs: initcall c02c6bbc t init_sd
7 msecs: initcall c02cc450 t init_sunrpc
10 msecs: initcall c02c01a8 t slab_sysfs_init
15 msecs: initcall c02c8d50 t genl_init
24 msecs: initcall c02c55c4 t serial8250_init
30 msecs: initcall c02c6364 t gfar_init
34 msecs: initcall c02c743c t physmap_init
72 msecs: initcall c02c9c60 t inet_init
127 msecs: initcall c02c4e4c t pty_init
4597 msecs: initcall c02cabe0 t ip_auto_config

TM

► Parallelize init tasks using custom startup scripts

► Provide user feedback early (i.e flash screens, etc) to give
the impression that the unit is booted while other work is
being done in the background.

► Use a pre-configured hibernate image

Additional Ideas

mvista.com/Freescale Slide #39

TM

Promotional Discounts

Offers good until Feb 18th.
Must be new customer with valid business email address – otherwise email sales@mvista.com.

Please fill out survey information and promo information will be emailed to you.
Does not apply to attendees of recorded web seminar.

mvista.com/Freescale Slide #40

25% off Freescale
i.MX31 PDK development platform

20% off MontaVista Mobilinux
5.0 LSP for i.MX31

mailto:sales@mvista.com

Thank You!

Event archive available at:

http://ecast.opensystemsmedia.com/

E-mail us at: ecast@opensystemsmedia.com

http://ecast.opensystemsmedia.com/
mailto:ecast@opensystemsmedia.com

	Tips and techniques for improving embedded �Linux startup time
	Agenda
	Face it, we’re impatient
	Not just consumers need ‘instant-on’
	Question/Answer
	Thank You!
	LinuxFreescaleMontaVista18Nov08.pdf
	Tips and techniques for improving embedded Linux startup time��Presented by MontaVista Software and Freescale Semiconductor
	Contents
	Multimedia Devices – Explosive Growth
	What do consumers want?
	What do consumer device manufacturers want?
	Software challenges facing consumer product design
	Contents
	Hardware
	i.MX Applications Processors
	Freescale Multimedia Applications Processors
	The Linux software stack
	Contents
	The Solution…
	Hardware Design
	Boatloader Considerations
	Bootloader Consideration
	What components can we optimize?
	Contents
	Typical Boot Sequence
	Contents
	Kernel Image Optimization
	Linux Kernel Configuration
	Examples: Interesting Kernel Configuration
	Examples: Interesting Kernel Configuration
	More Interesting Kernel Config Options
	More Interesting Kernel Config Options
	XIP – Execute in Place
	Calibration Routines
	Driver Configuration
	File System Selection
	Remove Support for printk()
	Tools for Measuring Startup Time
	Tools for Measuring Startup Time
	Initial Baseline
	After Inexpensive Optimizations
	Other Useful Ideas
	Other Useful Ideas
	Other Useful Ideas
	Additional Ideas
	Promotional Discounts

