[Top] [All Lists]

New paper on particle motion in aquatic bioacoustics

To: "" <>
Subject: New paper on particle motion in aquatic bioacoustics
From: "Nathan Merchant (Cefas)" <>
Date: Mon, 7 Mar 2016 16:35:06 +0000

Dear Colleagues,


We are pleased to announce the following publication on particle motion measurement and its role in aquatic bioacoustics. Please contact the lead author, Sophie Nedelec, if you have any queries about the paper:


Nedelec, SL, Campbell, J, Radford, AN, Simpson, SD & Merchant, ND (2016). Particle motion: the missing link in underwater acoustic ecology. Methods in Ecology and Evolution






1.      Sound waves in water have both a pressure and a particle-motion component, yet few studies of underwater acoustic ecology have measured the particle-motion component of sound. While mammal hearing is based on detection of sound pressure, fish and invertebrates (i.e. most aquatic animals) primarily sense sound using particle motion. Particle motion can be calculated indirectly from sound pressure measurements under certain conditions, but these conditions are rarely met in the shelf-sea and shallow-water habitats that most aquatic organisms inhabit. Direct measurements of particle motion have been hampered by the availability of instrumentation and a lack of guidance on data analysis methods.

2.      Here, we provide an introduction to the topic of underwater particle motion, including the physics and physiology of particle-motion reception. We include a simple computer program for users to determine whether they are working in conditions where measurement of particle motion may be relevant. We discuss instruments that can be used to measure particle motion and the types of analysis appropriate for data collected. A supplemental tutorial and template computer code in matlab will allow users to analyse impulsive, continuous and fluctuating sounds from both pressure and particle-motion recordings.

3.      A growing body of research is investigating the role of sound in the functioning of aquatic ecosystems, and the ways in which sound influences animal behaviour, physiology and development. This work has particular urgency for policymakers and environmental managers, who have a responsibility to assess and mitigate the risks posed by rising levels of anthropogenic noise in aquatic ecosystems. As this paper makes clear, because many aquatic animals senses sound using particle motion, this component of the sound field must be addressed if acoustic habitats are to be managed effectively.



Kind regards,


Nathan Merchant and Sophie Nedelec



Dr Nathan Merchant

Lead Scientist, Noise & Bioacoustics Team
Pakefield Road, Lowestoft, Suffolk, NR33 0HT, UK
Tel: +44(0) 1502 527780 | Mob: +44 (0) 7789 651086

Email: m("","nathan.merchant");">

Follow us on:
cid:<script language=m("01D09A11.D21ECDA0","image001.gif");">cid:<script language=m("01D09A11.D21ECDA0","image002.gif");">


This email and any attachments are intended for the named recipient only. Its unauthorised use, distribution, disclosure, storage or copying is not permitted. If you have received it in error, please destroy all copies and notify the sender. In messages of a non-business nature, the views and opinions expressed are the author's own and do not necessarily reflect those of Cefas. Communications on Cefas’ computer systems may be monitored and/or recorded to secure the effective operation of the system and for other lawful purposes.

<Prev in Thread] Current Thread [Next in Thread>
  • New paper on particle motion in aquatic bioacoustics, Nathan Merchant (Cefas) <=

The University of NSW School of Computer and Engineering takes no responsibility for the contents of this archive. It is purely a compilation of material sent by many people to the Bioacoustics-L mailing list. It has not been checked for accuracy nor its content verified in any way. If you wish to get material removed from the archive or have other queries about the archive e-mail Andrew Taylor at this address: andrewt@cse.unsw.EDU.AU